Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 300: 118976, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35150795

RESUMO

Dragonfly adults and their aquatic immature stages are important parts of food webs and provide a link between aquatic and terrestrial components. During emergence, contaminants can be exported into terrestrial food webs as immature adults fly away or be shed with their exuviae and remain in the wetland. Our previous work established metals accumulating in dragonfly nymphs throughout a contaminated constructed wetland designed to regulate pH and sequester trace metals from an industrial effluent line. Here, we evaluated the concentration and mass of metals leaving the wetland in flying emergents versus remaining in the wetland with the shed exuviae in 10 species of dragonflies belonging to 8 genera. Nine elements (Cu, Zn, Cd, Mn, V, Mg, Fe, Al, Pb) were evaluated that include essential and nonessential elements as well as trace and major metals. Metal concentrations in the emergent body and exuviae can differ by orders of magnitude. Aluminum, Fe, Mn, and Pb were largely shed in the exuviae. Vanadium and Cd were more variable among species but also tended to be shed with the exuviae. In contrast, Cu, Zn, and Mg showed a higher tendency to leave the wetland with an emerging dragonfly. Metals shed in dragonfly exuviae can moderate the transport of metals from contaminated wetlands. Taxonomic- and metal-specific variability in daily metal flux from the wetland depended upon concentration accumulated, individual body mass, and number of individuals emerging, with each factor's relative importance often differing among species. This illustrates the importance of evaluating the mass of metals in an individual and not only concentrations. Furthermore, differences in numbers of each species emerging will magnify differences in individual metal flux when calculating community metal flux. A better understanding of the variability of metal accumulation in nymphs/larvae and metal shedding during metamorphosis among both metals and species is needed.


Assuntos
Metais Pesados , Odonatos , Oligoelementos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Metais , Metais Pesados/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise , Áreas Alagadas
2.
Environ Toxicol Chem ; 39(12): 2485-2495, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32845529

RESUMO

The present study accessed the use of diffusive gradients in thin film (DGT) as a surrogate for estimating the bioavailability and bioaccumulation of copper (Cu) and zinc (Zn) in a freshwater mussel. We coupled DGTs with mussels and deployed them in a constructed wetland. Water quality parameters were measured for a 4-d period on 3 continuous occasions during 12-d trials in the summer and winter; metal speciation was modeled for each occasion. Higher cumulative rainfall and water turbidity during the summer trial resulted in higher particulate metal concentrations compared to the winter trial. Mussel accumulated metals did not correlate with DGT-measured metals but positively correlated with particulate metals in the summer because filtering particulate food mainly contributed to the bioaccumulation. In contrast, the winter trial suggested a positive correlation between metal bioaccumulation and DGT-measured metals because uptake of dissolved organic matter (DOM) from water mainly contributed to the bioaccumulation, and the labile metal species complexed with DOM generally overlapped with DGT-targeted metals. Though Cu has a higher affinity for organic ligands than Zn, the interactions between Cu and Zn in the mixture did not impede their uptake and bioaccumulation. The deployment duration when DGTs and mussels are coupled to compare metal bioavailability should be no less than 12 d so that mussels have enough time to accumulate contaminants from the environmental media. In summary, DGT is a convenient surrogate for biomonitoring, but it may not fit the real environment such as the aquatic system with unstable water chemistries. Geochemical modeling is good at calculating metal speciation but inferior to DGT in predicting bioavailability and mimicking bioaccumulation. Environ Toxicol Chem 2020;39:2485-2495. © 2020 SETAC.


Assuntos
Metais/análise , Água/química , Animais , Disponibilidade Biológica , Bivalves/metabolismo , Difusão , Exposição Ambiental/análise , Água Doce , Nefelometria e Turbidimetria , Material Particulado/análise , Chuva , Rios/química , Estações do Ano , Poluentes Químicos da Água/análise , Qualidade da Água , Áreas Alagadas
3.
Environ Pollut ; 256: 113387, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31677879

RESUMO

Constructed wetland effectiveness is often assessed by measuring reductions of contaminant concentrations in influent versus departing effluent, but this can be complicated by fluctuations in contaminant content/chemistry and hydrology. We assessed effectiveness of a constructed wetland at protecting downstream biota from accumulating elevated metal concentrations-particularly copper and zinc in effluents from a nuclear materials processing facility. Contaminants distributed throughout a constructed wetland system and two reference wetlands were assessed using six dragonfly nymph genera (Anax, Erythemis, Libellula, Pachydiplax, Tramea, and Plathemis) as biomonitors. Additionally, the crayfish, Cambarus latimanus, were analyzed from the receiving and two reference streams. Concentrations of Cu, Zn, Pb, Mn, Cr, Cd, and Al were evaluated in 597 dragonfly nymph and 149 crayfish whole-body composite samples. Dragonfly genera varied substantially in metal accumulation and the ability to identify elevated metal levels throughout components of the constructed wetland. Genera more closely associated with bottom sediments tended to accumulate higher levels of metals with Libellula, Pachydiplax, and Erythemis often accumulating highest concentrations and differing most among sites. This, combined with their abundance and broad distributions make the latter two species suitable candidates as biomonitors for constructed wetlands. As expected, dragonfly nymphs accumulated higher metal concentrations in the constructed wetland than reference sites. However, dragonfly nymphs often accumulated as high of metal concentrations downstream as upstream of the water treatment cells. Moreover, crayfish from the receiving stream near the constructed wetland accumulated substantially higher Cu concentrations than from downstream locations or reference streams. Despite reducing metal concentrations at base flow and maintaining regulatory compliance, metal fluxes from the wetland were sufficient to increase accumulation in downstream biota. Future work should evaluate the causes of downstream accumulation as the next step necessary to develop plans to improve the metal sequestering efficiency of the wetland under variable flow regimes.


Assuntos
Astacoidea/metabolismo , Monitoramento Ambiental/métodos , Metais Pesados/análise , Ninfa/metabolismo , Odonatos/metabolismo , Poluentes Químicos da Água/análise , Áreas Alagadas , Animais , Bioacumulação , Biodegradação Ambiental , Sedimentos Geológicos/química , Metais Pesados/metabolismo , Poluentes Químicos da Água/metabolismo
4.
Environ Int ; 133(Pt A): 105174, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31627135

RESUMO

Accumulation of eleven trace elements in sediment was evaluated throughout an industrially disturbed headwater stream on the Savannah River Site, SC, USA. Sampling began at upstream sedimentation basins at the margins of industrial areas, continued longitudinally downstream to a beaver pond representing a potential sink in the mid-reaches, and ended in downstream reaches. Additionally, sediment from beaver impacted areas in another industrially disturbed stream and a reference stream were analyzed to assess the natural tendency of these depositional features to settle out trace elements. We further compared trace element accumulation in sediment and biota from downstream reaches before and after an extreme rainy period to evaluate the potential redistribution of trace elements from sink areas. Trace elements accumulated in the headwater basins from which elements were redistributed to downstream reaches. The mid-reach beaver affected area sediments accumulated elevated concentrations of most analyzed elements compared to the free-flowing stream. The elevated accumulation of organic matter in these sink areas illustrated the effectiveness of reduced water velocity areas to settle out materials. The natural tendency of beaver ponds to accumulate trace elements and organic matter was further illustrated by sediments from the reference beaver pond accumulating higher concentrations of several elements than sediments from the free flowing section the stream impacted by industrial activity. However, concentrations in sediment from sedimentation basins and the beaver impacted area of the disturbed stream were highest. Trace elements and organic matter appeared to be redistributed from the sinks after the record rainy period resulting in increased trace element concentrations in both sediment and biota. These data suggest that assessments of contaminants in stream systems should include such slow-water, extreme depositional zones such as beaver impacted areas or basins to verify what contaminants may be pulsing through the stream.


Assuntos
Lagoas/química , Rios/química , Oligoelementos/análise , Animais , Monitoramento Ambiental , Indústrias , Roedores , South Carolina , Poluentes Químicos da Água/análise
5.
Environ Toxicol Chem ; 38(1): 115-131, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30284320

RESUMO

Extensive industrial areas in headwater stream watersheds can severely impact the physical condition of streams and introduce contaminants. We compared 3 streams that received stormwater runoff and industrial effluents from industrial complexes to 2 reference streams. Reference streams provide a benchmark of comparison of geomorphic form and stability in coastal plain, sandy-bottomed streams as well as concentrations of trace elements in sediment and biota in the absence of industrial disturbance. We used crayfish (Cambarus latimanus, Procambarus raneyi, Procambarus acutus) and crane fly larvae (Tipula) as biomonitors of 15 trace elements entering aquatic food webs. Streams with industrial areas were more scoured, deeply incised, and less stable. Sediment organic matter content broadly correlated to trace element accumulation, but fine sediments and organic matter were scoured from the bottoms of disturbed streams. Trace element concentrations were higher in depositional zones than runs within all streams. Despite contaminant sources in the headwaters, trace element concentrations were generally not elevated in sediments of the eroded streams. However, element concentrations were frequently elevated in biota from these streams with taxonomic differences in accumulation amplified. In eroded, sand-bottomed coastal plain streams with unstable sediments, single snapshots of sediment trace element concentrations did not characterize well bioavailable trace elements. Biota that integrated exposures over time and space within their home ranges better detected bioavailable contaminants than sediment. Environ Toxicol Chem 2019;38:115-131. © 2018 SETAC.


Assuntos
Biota , Sedimentos Geológicos/química , Indústrias , Rios/química , Oligoelementos/análise , Animais , Argila , Monitoramento Ambiental , Geografia , Compostos Orgânicos/análise , Análise de Componente Principal , Especificidade da Espécie , Poluentes Químicos da Água
6.
PLoS One ; 12(2): e0172016, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28207806

RESUMO

Constituents of coal combustion waste (CCW) expose aquatic organisms to complex mixtures of potentially toxic metals and metalloids. Multi-element trace element analyses were used to distinguish patterns of accumulation among 8 genera of dragonfly nymphs collected from two sites on a CCW contaminated coastal plain stream. Dragonfly nymphs are exceptional for comparing trace element accumulation in syntopic macroinvertebrates that are all predators within the same order (Odonata) and suborder (Anisoptera), but differ vastly in habitat use and body form. Sixteen trace element (Be, V, Cr, Ni, Cu, Zn, As, Se, Sr, Cd, Sb, Cs, Ba, Hg, Tl, and Pb) were analyzed and trophic position and basal carbon sources assessed with stable isotope analyses (C and N). Trophic positions varied within relatively narrow ranges. Size did not appear to influence trophic position. Trophic position rarely influenced trace element accumulation within genera and did not consistently correlate with accumulation among genera. Patterns between δ13C and trace element accumulation were generally driven by differences between sites. An increase in trace element accumulation was associated with a divergence of carbon sources between sites in two genera. Higher trace element concentrations tended to accumulate in nymphs from the upstream site, closer to contaminant sources. Influences of factors such as body form and habitat use appeared more influential on trace element accumulation than phylogeny for several elements (Ni, Ba, Sr, V, Be, Cd, and Cr) as higher concentrations accumulated in sprawler and the climber-sprawler genera, irrespective of family. In contrast, As and Se accumulated variably higher in burrowers, but accumulation in sprawlers differed between sites. Greater variation between genera than within genera suggests genus as an acceptable unit of comparison in dragonfly nymphs. Overall, taxonomic differences in trace element accumulation can be substantial, often exceeding variation between sites. Our results underscore the element and taxa specific nature of trace element accumulation, but we provide evidence of accumulation of some trace elements differing among dragonflies that differ in body form and utilize different sub-habitats within a stream reach.


Assuntos
Monitoramento Ambiental/métodos , Intoxicação por Metais Pesados , Ninfa/metabolismo , Odonatos/metabolismo , Intoxicação , Oligoelementos/metabolismo , Poluentes Químicos da Água/análise , Animais , Ninfa/efeitos dos fármacos , Odonatos/efeitos dos fármacos , Oligoelementos/análise
7.
Ecotoxicol Environ Saf ; 101: 196-204, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24507146

RESUMO

Dissimilarities in habitat use, feeding habits, life histories, and physiology can result in syntopic aquatic taxa of similar trophic position bioaccumulating trace elements in vastly different patterns. We compared bioaccumulation in a clam, Corbicula fluminea and mayfly nymph Maccaffertium modestum from a coal combustion waste contaminated stream. Collection sites differed in distance to contaminant sources, incision, floodplain activity, and sources of flood event water and organic matter. Contaminants variably accumulated in both sediment and biofilm. Bioaccumulation differed between species and sites with C. fluminea accumulating higher concentrations of Hg, Cs, Sr, Se, As, Be, and Cu, but M. modestum higher Pb and V. Stable isotope analyses suggested both spatial and taxonomic differences in resource use with greater variability and overlap between species in the more physically disturbed site. The complex but essential interactions between organismal biology, divergence in resource use, and bioaccumulation as related to stream habitat requires further studies essential to understand impacts of metal pollution on stream systems.


Assuntos
Corbicula/metabolismo , Insetos/metabolismo , Rios/química , Oligoelementos/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Carbono/metabolismo , Isótopos de Carbono/análise , Carvão Mineral , Corbicula/química , Ecossistema , Herbivoria , Insetos/química , Nitrogênio/metabolismo , Isótopos de Nitrogênio/análise , Oligoelementos/análise
8.
Arch Environ Contam Toxicol ; 66(3): 341-60, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24384693

RESUMO

Extensive and critical evaluation can be required to assess contaminant bioaccumulation in large predatory fishes. Species differences in habitat use, resource use, and trophic level, often influenced by body form, can result in diverging contaminant bioaccumulation patterns. Moreover, the broad size ranges inherent with large-bodied fish provide opportunity for trophic and habitat shifts within species that can further influence contaminant exposure. We compared contaminant bioaccumulation in four fish species, as well as two herbivorous invertebrates, from a coal combustion waste contaminated stream. Muscle, liver, and gonad tissue were analyzed from fish stratified across the broadest size ranges available. Effects of trophic position (δ (15)N), carbon sources (δ (13)C), and body size varied among and within species. Mercury and cesium concentrations were lowest in the invertebrates and increased with trophic level both among and within fish species. Other elements, such as vanadium, cadmium, barium, nickel, and lead, had greater levels in herbivorous invertebrates than in fish muscle. Sequestration by the fish livers averted accumulation in muscle. Consequently, fish liver tissue appeared to be a more sensitive indicator of bioavailability, but exceptions existed. Despite liver sequestration, within fishes, muscle concentrations of many elements still tended to increase by trophic level. Notable variation within some species was observed. These results illustrate the utility of stable isotope data in exploring differences of bioaccumulation within taxa. Our analyses suggest a need for further evaluation of the underlying sources of this variability to better understand contaminant bioaccumulation in large predatory fishes.


Assuntos
Carvão Mineral , Monitoramento Ambiental , Peixes/metabolismo , Oligoelementos/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Ecossistema , Cadeia Alimentar , Invertebrados/metabolismo , Centrais Elétricas
9.
Environ Toxicol Chem ; 25(9): 2432-45, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16986799

RESUMO

Catastrophic collapse of a mine tailings dam released several million cubic meters of toxic mud and acidic water into the Guadiamar River valley, southern Spain, in 1998. Remediation efforts removed most of the sludge from the floodplain, but contamination persists. Clean-up activities also produced clouds of aerosolized materials that further contaminated the surrounding landscape. Whole-body concentrations of 21 elements in the Moorish wall gecko, Tarentola mauritanica, a common inhabitant of both rural and urban areas, were compared among seven locations. Locations spanned an expected contamination gradient and included a rural and an urban non-mine-affected location, two mine-affected towns, and three locations on the contaminated floodplain. Multivariate analyses of whole-body concentrations identified pollutants that increased across the expected contamination gradient, a trend particularly evident for As, Pb, and Cd. Additionally, higher contaminant concentrations occurred in prey items eaten by geckos from mine-affected areas. Comparison of element concentrations in tails and whole bodies suggests that tail clips are a viable nondestructive index of contaminant accumulation. Our results indicate that areas polluted by the mine continue to experience contamination of the terrestrial food chain. Where abundant, geckos represent useful taxa to study the bioavailability of some hazardous pollutants.


Assuntos
Desastres , Monitoramento Ambiental/métodos , Lagartos/metabolismo , Metais/metabolismo , Mineração , Animais , Demografia , Dieta , Metais/análise , Rios/química , Poluentes do Solo/análise , Espanha , Cauda , Poluentes Químicos da Água/análise
10.
Environ Sci Technol ; 40(14): 4500-5, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16903292

RESUMO

We hypothesized that adding micaceous minerals to 137Cs-contaminated aquatic systems would serve as an effective in situ remediation technique by sequestering the contaminant and reducing its bioavailability. Results from several laboratory studies are presented from which an effective amendment material was chosen for a replicated field study. The field study was conducted over a 2-year period and incorporated 16 3.3-m diameter column-plots (limnocorrals) that were randomly placed in a 137Cs-contaminated pond. The limnocorrals received three rates of amendment treatments to their water surfaces. The amendment material was a commercially available mineral with high sorption (Kd > 9000 L kg(-1)) and low desorption (<20%) characteristics for cesium, even in the presence of high concentrations of the competing cation, NH4+. In the treated limnocorrals, 137Cs concentrations were reduced some 25-30-fold in the water, 4-5-fold in aquatic plants, and 2-3-fold in fish. The addition of the amendment did not adversely affect water chemistry, although increased turbidity and subsequent siltation did alter the aquatic macroinvertebrate insect community. This in situ technology provides a valuable, less-environmentally intrusive alternative to costly ex situ technologies that require the contaminated sediment to be excavated prior to treatment, or excavated and disposed of elsewhere.


Assuntos
Silicatos de Alumínio/química , Radioisótopos de Césio/metabolismo , Recuperação e Remediação Ambiental , Poluentes Radioativos da Água/metabolismo , Animais , Radioisótopos de Césio/isolamento & purificação , Argila , Peixes , Insetos , Microscopia Eletrônica de Varredura , Poluentes Radioativos da Água/isolamento & purificação , Difração de Raios X
11.
Evolution ; 52(6): 1802-1810, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28565334

RESUMO

Despite a great diversity of reproductive behaviors in fishes, few studies have examined the genetic consequences of alternative reproductive tactics. Here we develop and employ microsatellite markers to assess genetic paternity and maternity of progeny cohorts in a population of redbreast sunfish (Lepomis auritus), a species in which males build and tend nests. Nearly 1000 progeny from 25 nests, plus nest-attendant males and nearby adults, were genotyped at microsatellite loci that displayed more than 18 alleles each. The genetic data demonstrate that multiple females (at least two to six) spawned in each nest, their offspring were spatially dispersed across a nest, and more than 90% of the young were sired by the attendant male. However, about 40% of the nests also showed genetic evidence of low-level reproductive parasitism, and two nests were tended by males that had fathered none of the sampled offspring. Genetically deduced reproductive behaviors in this population of redbreast sunfish contrast with those reported previously in bluegill sunfish (L. macrochirus) wherein heteromorphic males specialized for parasitism or for parental care coexist in high frequency. Thus, nest-parasitic reproductive behaviors in fishes appear to be evolutionary labile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...